Hyper Radial Basis Function Neural Networks for Interference Cancellation with Nonlinear Processing of Reference Signal
نویسندگان
چکیده
Efficient interference cancellation often requires nonlinear processing of a reference signal. In this paper, hyper radial basis function (HRBF) neural networks for adaptive interference cancellation is developed. We show that the HRBF networks, with an appropriate learning algorithm, is able to approximate the interference signal more efficiently than standard radial basis function (RBF) networks. The HRBF network-based canceller achieves better results for interference cancellation. This is due to the capabilities of the HRBF networks to approximate arbitrary multidimensional nonlinear functions and better flexibility in comparison to RBF networks. Simulation examples and comparisons to the FIR-based linear canceller and the RBFN-based canceller demonstrate the usefulness and effectiveness of the HRBFN based canceller. 2001 Academic Press
منابع مشابه
Hyper Radial Basis Function Neural Network for Nonlinear Interference Cancellation
In this paper the neural network based lter for nonlinear interference cancellation is developed. The Hyper Radial Basis Function (HRBF) network with associated Manhattan learning algorithm is proposed for non-linear noise cancellation under assumption that reference noise is available. The HRBF network is a generalization of radial basis function (RBF) and generalized radial basis function (GR...
متن کاملApplication of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)
This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملAdaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks
This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...
متن کاملEnvironmental Interference Cancellation of Speech with the Radial Basis Function Networks: An Experimental Comparison
In this paper, we use Radial Basis Function Networks (RBFN) for solving the problem of environmental interference cancellation of speech signal. We show that the Second Order ThinPlate Spline (SOTPS) kernel cancels the interferences effectively. For make comparison, we test our experiments on two conventional most used RBFN kernels: the Gaussian and First order TPS (FOTPS) basis functions. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Digital Signal Processing
دوره 11 شماره
صفحات -
تاریخ انتشار 2001